翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

proper convex function : ウィキペディア英語版
proper convex function
In mathematical analysis (in particular convex analysis) and optimization, a proper convex function is a convex function ''f'' taking values in the extended real number line such that
:f(x) < +\infty
for at least one ''x'' and
:f(x) > -\infty
for every ''x''. That is, a convex function is ''proper'' if its effective domain is nonempty and it never attains -\infty. Convex functions that are not proper are called ''improper convex functions''.
A ''proper concave function'' is any function ''g'' such that f = -g is a proper convex function.
== Properties ==

For every proper convex function ''f'' on Rn there exist some ''b'' in Rn and β in R such that
:f(x) \ge x \cdot b - \beta
for every ''x''.
The sum of two proper convex functions is not necessarily proper or convex. For instance if the sets A \subset X and B \subset X are non-empty convex sets in the vector space ''X'', then the indicator functions I_A and I_B are proper convex functions, but if A \cap B = \emptyset then I_A + I_B is identically equal to +\infty.
The infimal convolution of two proper convex functions is convex but not necessarily proper convex.〔.〕

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「proper convex function」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.